by Stephen Rodriguez.
Release version 3.1 for Windows.

GENENEL ...t e e 2
Package, licence and terms Of USE.ccceciueeiiieciiee i 2
ACKNOWIBAGEIMENLS.vieieeiiie ettt ne s 2
To use EasyVENT within a Purebasic program..........cceeveeveeeneeneesessensnenns 3
Event handler fUNCLIONS. ..o 3
Performing default Windows ProCessing.cccveveeieeieeseeeseeseesee e eee e 5
Current list of SUPPOIEd EVENLS.........cceeeeiceeseec e 7
OLE Drag and drop iteIMS.........oocieieeiieiie et 21
TWO SPECIAISEA BVENES. ... 23
A note on Panel gadgets and ScrollAreagadgets........ccoovevevienicieccieeseenieene 27
A NOtE 0N SPIN QAAJELS.eeeveeiee e 27
A note on Structuring YOUr PrOgraMS.ccveecveereeeeeesreesseesseessesssessseessesssessnes 27
Upgrading from EasyVENT LXX.XX OF 2. XX.XX. veevveereesersersiseesseesessessneeans 28
Q& A : tIPS AN LFICKS. ..t 30

Page 1

General.

EasyVENT is a Purebasic library (written for Windows only) which allows developers to
easily attach event handlers to windows/controls/menus etc. for a predefined set of
Windows events.

For example, attaching an event handler for a button’s click event is accomplished by
issuing the command:

Result = SetEventHandler(hWnd, #OnButtonClick, @MyButtonHandler())
where hWnd is the handle of the button gadget, and MyButtonHandler() is the name of a
function within your code which acts as the event handler. That is, whenever a user clicks

the button in question, the function MyButtonHandler() will run.

A non-zero return means there was no error in registering the handler.

The list of events covered by this library will increase with each release. The current list is
detailed below.

NOTE that the library is currently only available for Purebasic 4 for Windows and is in the
form of a source code include file.

Package, licence and terms of use.
This package contains all the EasyVENT source files, various demo programs (as
appropriate) and this user guide.

The software contained within this package is free to use in any project (commercial or
otherwise) or as a learning tool. I do, however, assert my moral right to be identified as
the creator of this software (except where acknowledgements are given) and thus ask that
due acknowledgement is given within any product/creation in which my source code forms
a part. Use the software for any purpose whatsoever.

The EasyVENT software is provided on an as is basis, with no warranty either given or
implied, meaning that I am not liable for any damage caused by its use (or misuse!) nor
by damage caused by other programs based on its source code.

Acknowledgements.
Thanks to the following:

Timo 'Freak’' Harter for his excellent OLE drag and drop library which version 2.0 of
EasyVENT makes use of.

netmaestro for pointing me in the right direction when I couldn't see two feet in
front of myself!

ebs, kiffi and Geotrail for being the first to risk this library!

netmaestro (again!) for his work on the #0OnCursorEnter and #0OnCursorExit
events. This area is now far far superior to the alpha versions of EasyVENT.

DoubleDutch for continued testing of EasyVENT 3.

Page 2

To use EasyVENT within a Purebasic program.
Simply ensure that the following command resides within your Purebasic source code file
before any attempt is made to attach an event handler to a window/control:

XincludeFile "EasyVENT.pbi”

You can now attach event handlers to either the window in question or any of its’ gadgets
or menus etc.

That's it.

Event handler functions.
Registering one of your own functions as an event handler for one or more events is
simple. Use the command:

Result = SetEventHandler(hWnd, Event, @MyEventHandler(), [commanditem])
hWhnd is the windows handle of the window/control to which the handler is to be attached.

Event is one of the intrinsic event constants (such as #OnButtonClick) which details the
particular event and which are described in detail below.

commanditem is an optional parameter used only when attaching event handlers to menu
items / toolbar buttons.

The function: RemoveEventHandler(hWnd, Event, [commanditem])

will remove a handler from the specified window/control’s list of registered handlers.
Again, commanditem is optional and only used when removing event handlers from menu
items / toolbar buttons.

The function: PerformDefaultWinProcessing(*sender.PB_Sender)

allows an event handler to instruct the EasyVENT library to itself instruct Windows to
perform the default processing associated with the underlying Windows message (if any).

See the section on ‘Performing default Windows processing’ for more details. !

A ‘skeleton’ event handler function.
Each event handler function that you use should assume the following form.

Procedure.l MyEventHandler(*sender.PB_Sender)
...... {Your code}

ProcedureReturn result
EndProcedure

! This function is new for EasyVENT 3.0.0.

Page 3

The PB_Sender structure is intended to provide information useful in the processing of the
underlying event and is defined in the “"EventModuleResident.pbi” source file as follows:

Structure PB_Sender

hwnd.l
message.|
mouseX.|
mouseY.|
button.|
item.l|
state.l
text$

originalmessage.l|

uMsg.l
wParam.l|
IParam.l

EndStructure (+ three additional fields which are reserved for internal use.)

Individual events shipped by EasyVENT will use a selection of these fields only (as detailed
in the section describing each event), but each field generally serves a specific function as

detailed:

hWnd the windows handle of the window/control to which the event
concerns.

message one of the intrinsic event constants listed below.

mouseX the x-coordinate of the mouse cursor at the time the event occurred.
This is usually in client coordinates; except for the non-client mouse
events, in which case this will be in screen coordinates.

mouseY the y-coordinate of the mouse cursor at the time the event occurred.
This is usually in client coordinates; except for the non-client mouse
events, in which case this will be in screen coordinates.

button for click events, this indicates which mouse button was clicked etc. It
will assume one of the following values:
#EVENT_LEFTBUTTON
#EVENT_MIDDLEBUTTON
#EVENT_RIGHTBUTTON

item for certain events\gadgets this indicates which item is being affected
etc.

state for certain events\gadgets this provides extra information.

text$ for certain events\gadgets this provides extra information.

originalmessage only used for the #OnUnhandledWinMessage event.

The remaining fields; uMsg, wParam, IParam are relevant only when the underlying event
corresponds directly to a windows message (not all events do!) and contain the ubiquitous
windows ‘message values’ (this is for more experienced programmers only).

Page 4

Some events will allow you to change these values in order to affect changes to the
corresponding windows message processing. You can even change the value of uMsg to
change the actual windows message (useful for mouse messages).

Take care when changing these values!
You should exit your event handler with the statement:
ProcedureReturn result

where, for those events in which a return value is important and in_all cases but one,
result assumes one of the following values:

#Event_ReturnDefault (default)
instructs EasyVENT to return the result of performing the underlying
Windows processing for this message (if any). This depends on the
developer’s event handler first calling the function
PerformDefaultWinProcessing() (see below). If this function is not called
then returning #Event_ReturnDefault defaults to #Event_ReturnTrue.

#Event ReturnTrue
instructs EasyVENT to return a value to Windows (depending on the
particular event) which would be interpreted as ‘proceed’ or ‘true’ or ‘yes’ or
‘valid’ etc. depending upon the context and nature of the particular event.
You will need to see the description of individual events to see exactly how
this value is interpreted and utilised etc. For example, for the event
#0nItemSelecting, a return value of #Event_ReturnTrue will permit the
underlying selection to proceed.

#Event_ReturnFalse
instructs EasyVENT to return a value to Windows (depending on the
particular event) which would be interpreted as ‘cancel’ or ‘false’ or ‘no’ or
‘invalid’ etc. depending upon the context and nature of the particular event.
You will need to see the description of individual events to see exactly how
this value is interpreted and utilised etc. For example, for the event
#0OnlItemSelecting, a return value of #Event_ReturnFalse will prevent the
underlying selection from proceeding.

The exception to this is any handler attached to the #OnUnhandledWinMessage
event in which case the value returned from the handler is passed directly back to
Windows. 2

Performing default Windows processing.
Many (but not all) EasyVENT events correspond to Windows messages. For example the
event #0nClose directly corresponds to the Windows message #WM_CLOSE.

In such cases it is often desirable (and sometimes necessary) to allow Windows to perform
it's ‘default’ processing for this message.

A classic example will be the event #0OnMouseDown (corresponding to the various mouse
button messages; #WM_LBUTTONDOWN etc.) in which most handlers will require

2 The #OnANYevent and #OnUnhandledWinMessage events require rather specia attention and so the reader is
advised to read the sections detailing these events very carefully.

Page 5

Windows to first perform it’s default processing before the handler adds it’s own
processing.

For this, there is now (introduced in EasyVENT 3.0.0) the command :
PerformDefaultWinProcessing(*sender.PB_Sender)

which can be called at any time during the execution of your event handler.
This way you have complete control over when (if ever) Windows gets to perform it's
default processing etc.

The return from this function is that which Windows itself returns and is really only
important for the #0OnUnhandledWinMessage event. For all other events, returning the
value #Event_ReturnDefault from your handler will ensure that the value returned from
PerformDefaultWinProcessing() is passed along as appropriate.

NOTES.

i) In earlier versions of EasyVENT (prior to 3.0.0) Windows could only perform such
default processing after an event handler had finished executing. Whilst
convenient, this did restrict the EasyVENT library somewhat and led to a few
inconsistencies (particularly with keyboard and mouse events).

i) Having complete freedom over when (and if) such default processing is to occur
does mean that things are a little more complex now.

The problem is that the developer now has to decide whether default processing is
to occur and, more importantly perhaps, when?

Do you call PerformDefaultWinProcessing() at the beginning of your handler, or
at the end?

Experienced Windows programmers will know just how important this can be for
certain messages and how much difference changing this order can make to a piece
of codel!

If in doubt, position a call to PerformDefaultWinProcessing() at the end of your
handler code, at least in the first instance. If this doesn’t achieve the desired
results, then reposition it at the beginning of your handler etc.

iii) So which events can, or should, you not include a call to
PerformDefaultWinProcessing() ?

Basically any event where you do not wish any default processing to be
undertaken!

Not including a call to PerformDefaultWinProcessing() can lead to problems
with certain events, whilst with others it will make no difference at all.

For example, a #OnKeyDown handler could prevent presses of the return key from

registering with a gadget by calling PerformDefaultWinProcessing() only if the
user did not press the return key etc.

Page 6

Indeed PerformDefaultWinProcessing() comes into it's own with the keyboard
and mouse events in particular.

If an event corresponds to a notification sent by Windows (e.g.
#0nCollapseExpandSelection) then there is usually little point in calling
PerformDefaultWinProcessing(). In such cases, the value you return from your
event handler may or may not be important (depending on the event concerned).

See the demo programs for examples of how to structure your event handlers and to get
an idea of when to call the PerformDefaultWinProcessing() function.

Current list of supported events.
The following list details the events currently supported and, where appropriate,
accompanying notes.

The events detailed are used with the commands:

SetEventHandler()
and RemoveEventHandler()

as detailed above.

#0nANYevent
This is a new addition to EasyVENT? and a discussion of this event is left to the section

Two specialised events.

#0nButtonClick
This event fires whenever the user clicks a button registered as receiving such events.

The values of the fields of the *sender parameter of interest are as follows:

hWnd the windows handle of the button.
button #EVENT _LEFTBUTTON
item the button ID.

This event corresponds to the Windows command message #BN_CLICKED.

The return value is unimportant as this is just a notification. You need not call
PerformDefaultWinProcessing() either.

#0nChange
This event fires whenever the user has taken some action which may have altered text in

a string gadget or an editor gadget. E.g. entered text, pasted text etc.
Probably more useful with an editor (rich edit) gadget.

The values of the fields of the *sender parameter of interest are as follows:

® Introduced in EasyVENT 3.0.1.

Page 7

hWnd the windows handle of the control.

This event corresponds to the Windows command message #EN_CHANGE.

The return value is unimportant as this is just a notification. You need not call
PerformDefaultWinProcessing() either.

#0nClose
This event fires whenever the user clicks the close button on the registered window.

This event corresponds to the Windows message #WM_CLOSE.

The return value is not important in that #Event_ReturnTrue and #Event _ReturnFalse

have the same effect.

What is important is whether you allow Windows to perform the default processing by

calling PerformDefaultWinProcessing() and then you will probably return a value of
#Event ReturnDefault.

#0nCollapseExpandSelection Tree Gadgets and explorer tree gadgets only.
This event fires whenever the user attempts to collapse or expand a parent node’s list of
child items.

The values of the fields of the *sender parameter of interest are as follows:

hWnd the windows handle of the control.
item the item number of the parent node.
state #EVENT_COLLAPSE or #EVENT_EXPAND as appropriate.

This event corresponds to the Windows notify message #TVN_ITEMEXPANDING.

Return #Event ReturnfFalse from your event handler to prevent the parent node’s list of
child items being collapsed or expanded. Return #Event_ReturnTrue or
#Event_ReturnDefault otherwise. You need not call PerformDefaultWinProcessing().

#0nContextMenuPopup
This event fires whenever the user attempts to right-click the registered control or
otherwise invoke an associated popup menu.

This event can be used to prevent such a context menu from appearing (such as those
belonging to string gadgets) or indeed can be used to replace the default menu with a
custom one etc.

The values of the fields of the *sender parameter of interest are as follows:

hWnd the windows handle of the control.
button #EVENT_RIGHTBUTTON
IParam the position of the cursor (in screen coordinates). The low-word holds

the horizontal position, the high-word holds the vertical position.

This event can now be used for the edit control attached to an editable ComboBox
gadget. Attach the appropriate event handler to the ComboBox gadget as usual.
This event corresponds to the Windows message # WM_CONTEXTMENU.

Page 8

The return value is not important in that #Event _ReturnTrue and #Event_ReturnFalse
have the same effect.

To prevent a default menu from appearing with certain controls simply do not call
PerformDefaultWinProcessing() etc. In such cases you can display your own popup
menu.

#0nCursorEnter
This event fires whenever the mouse cursor enters the client area of the control/window.*

The values of the fields of the *sender parameter of interest are as follows:
hWnd the windows handle of the control.

The return value is ignored.

#0OnCursorExit
This event fires whenever the mouse cursor leaves the control/window.

The values of the fields of the *sender parameter of interest are as follows:

hWnd the windows handle of the control.

The return value is ignored.

#0nDblClick
This event fires whenever the user double clicks a mouse button within either the client or
non-client areas of the control/window registered as receiving such events.

The values of the fields of the *sender parameter of interest are as follows:

hWnd the windows handle of the control.

button #EVENT _LEFTBUTTON or #EVENT_MIDDLEBUTTON or
#EVENT_RIGHTBUTTON as appropriate.

state one of the values #EVENT _CLIENT or #EVENT_NONCLIENT as

appropriate.

NOTE, the mouseX and mouseY fields of the *sender parameter will be in client
coordinates or screen coordinates depending on whether this is a client or non-client event
(just check the value of the state field.)

This event corresponds to the Windows messages #WM_LBUTTONDBLCLK,
#WM_NCLBUTTONDBLCLK, #WM_MBUTTONDBLCLK, #WM_NCMBUTTONDBLCLK,
#WM_RBUTTONDBLCLK and #WM_NCRBUTTONDBLCLK as appropriate.

The return value is not important in that #Event_ReturnTrue and #Event_ReturnFalse
have the same effect.

What is important is whether you allows Windows to perform the default processing by
calling PerformDefaultWinProcessing() and then you will probably return a value of
#Event_ ReturnDefault.

* | may add non-client support at alater date.

Page 9

#0nDragDrop
This event fires whenever the user drops files onto a control/window registered with this

event.

The values of the fields of the *sender parameter of interest are as follows:

hWnd the windows handle of the control/window.

button #EVENT _LEFTBUTTON

item the number of filenames dropped.

wParam the windows handle of the underlying drop structure which will be

required when retrieving the dropped filenames (win api call will be
required for this).

NOTE for experienced Windows programmers. When the event handler exits, the
EasyVENT library automatically calls the DragFinish_() function to free up the internal
memory used etc. Thus the application should not call this function itself.

This event corresponds to the Windows message #WM_DROPFILES.

The return value is unimportant. You need not call PerformDefaultWinProcessing()
either.

#0OnDragltemStart See the separate section on drag/drop items for this event.
#0OnDropltem See the separate section on drag/drop items for this event.

#0nEditTreeLabels Tree Gadgets and explorer tree gadgets only.
This event fires whenever the user attempts to edit an item’s label and also when the user
has completed any subsequent editing.

The first call occurs when the user attempts to edit an item’s label. In this case the values
of the fields of the *sender parameter are as follows:

hWnd the windows handle of the control.
item the item number of the label which the user is attempting to edit.
state #EVENT_BEGINLABELEDIT

Return #Event_ReturnFalse from your event handler to prohibit the label from being
edited. Return #Event_ReturnTrue or #Event_ReturnDefault otherwise. You need not call
PerformDefaultWinProcessing().

The second call occurs when the user has finished editing an item’s label. In this case the
values of the fields of the *sender parameter are as follows:

hWnd the windows handle of the control.

item the item number of the label which the user is editing.
state #EVENT_ENDLABELEDIT

texts$ contains a copy of the new text which the user has entered.

Return #Event_ReturnFalse from your event handler to restore the label to its original
content. Return #Event_ReturnTrue or #Event ReturnDefault otherwise. You need not
call PerformDefaultWinProcessing().

Page 10

This event corresponds to the Windows notify messages #TVN_BEGINLABELEDIT and
#TVN_ENDLABELEDIT

#0OnErase

This event fires whenever the control/window background requires erasing prior to
painting etc. By using this event, you can take charge of many aspects of painting such as
‘owner draw’, reducing flicker etc.

The values of the fields of the *sender parameter of interest are as follows:

hWnd the windows handle of the control.
wParam identifies the device context (hdc) which can be used for drawing.

This event corresponds to the Windows message #WM_ ERASEBKGND.

If you call PerformDefaultWinProcessing() then you will likely return
#Event_ReturnDefault. Otherwise return #Event ReturnTrue to inform Windows that you
did not erase the background, #Event_ReturnFalse if you did. (This can have a noticeable
effect if XP themes are disabled.)

#0nGotFocus
This event fires whenever the registered control/window receives the keyboard focus.

This event corresponds to the Windows message #WM_SETFOCUS.

The return value is unimportant. You will need to consider calling
PerformDefaultWinProcessing() however, especially if the underlying control displays a
caret.

#0nltemCheckboxChanging

This event fires when the user attempts to alter a checkbox in an item of a control which
supports this event (currently Listlcon gadgets and Tree gadgets) but is sent before the
checkbox has been altered.

The item field of the *sender parameter indicates which item’s checkbox the user is
attempting to change (either through clicking the mouse or through the keyboard use etc.)

The state field of the *sender parameter contains one of the values :

#EVENT_CHECKING
#EVENT_UNCHECKING

which denotes the action attempted by the user.

Return #Event_ReturnFalse from your event handler to prevent the alteration. Return
#Event_ReturnTrue or #Event_ReturnDefault otherwise. You need not call
PerformDefaultWinProcessing().

Page 11

#OnltemSelected

This event fires after the user selects a new item in a registered gadget. The following
gadgets are supported:

ComboBoxGadget ExplorerComboGadget

ListViewGadget

ListIconGadget ExplorerListGadget
TreeGadget ExplorerTreeGadget

PanelGadget

NOTES.

D)

i)

For Listlcon gadgets and ExplorerList Gadgets, this event fires whenever
items are deselected as well as selected or (in the case that the Listlcon has
checkboxes displayed in the first column), the user checks or clears one of
the checkboxes. This of course means that this event can fire multiple times
for a single user action. In these cases the item field of the *sender
parameter indicates which item is being (de)selected and the state field
assumes one of the following values:

#EVENT_DESELECT

#EVENT_SELECT

For Tree gadgets and ExplorerTree gadgets, the item field of the *sender
parameter indicates which item has been selected and the state field
contains one of the following values to indicate how the item was selected :

#EVENT_UNKNOWN

#EVENT_MOUSE

#EVENT_KEYBOARD

For Panel gadgets, this event fires whenever the user selects a new tab. The
item field of the *sender parameter indicates which tab the user has
selected and the state field contains one of the following values to indicate
how the item was selected :

#EVENT_MOUSE

#EVENT_KEYBOARD

The return value is unimportant as this is just a notification. You need not call
PerformDefaultWinProcessing() either.

#0OnltemSelecting

This event fires when the user selects a new item in a registered gadget but before the
system changes the selection. This gives the developer the opportunity to refuse the
selection. The following gadgets are supported:

ListIconGadget ExplorerListGadget
TreeGadget ExplorerTreeGadget

PanelGadget

Page 12

The item field of the *sender parameter indicates which item is being selected.
NOTES.

i) For ListIcon gadgets and ExplorerList Gadgets, this event fires whenever
items are deselected as well as selected or (in the case that the ListIcon has
checkboxes displayed in the first column), the user checks or clears one of
the checkboxes. This of course means that this event can fire multiple times
for a single user action. In these cases the item field of the *sender
parameter indicates which item is being (de)selected and the state field
assumes one of the following values:

#EVENT_DESELECT
#EVENT_SELECT

i) For Tree gadgets and ExplorerTree gadgets, the item field of the *sender
parameter indicates which item is being selected and the state field contains
one of the following values to indicate how the item was selected :

#EVENT_UNKNOWN
#EVENT_MOUSE
#EVENT_KEYBOARD

iii) For Panel gadgets, this event fires whenever the item field of the *sender
parameter indicates which tab the user is attempting to select and the state
field contains one of the following values to indicate how the item was
selected :

#EVENT_MOUSE
#EVENT_KEYBOARD

Return #Event_ReturnFalse from your event handler to prevent the selection. Return
#Event_ReturnTrue or #Event_ReturnDefault otherwise. You need not call
PerformDefaultWinProcessing().

#0nKeyDown
This event fires whenever a non-system key has been pushed and the underlying

control/window has been registered for this event etc.

Useful for intercepting #VK_DEL key presses.
The values of the fields of the *sender parameter of interest are as follows:

hWnd the windows handle of the control/window.

wParam the virtual key code of the key.

This event can now be used for the edit control attached to an editable ComboBox
gadget. Attach the appropriate event handler to the ComboBox gadget as usual (although
when this event fires, *sender\hWnd will contain the handle of it's edit field). It also works
for DateGadgets.

This event corresponds to the Windows message # WM_KEYDOWN.

The return value is not important in that #Event_ReturnTrue and #Event_ReturnFalse
have the same effect.

Page 13

What is important is whether you allow Windows to perform the default processing by
calling PerformDefaultWinProcessing() and then you will probably return a value of
#Event_ReturnDefault.

#0nKeyPress
This event fires whenever the user presses a key on the keyboard and the underlying

control/window has been registered for this event etc.
The values of the fields of the *sender parameter of interest are as follows:

hWnd the windows handle of the control/window.
wParam the character code of the key.

This event can now be used for the edit control attached to an editable ComboBox
gadget. Attach the appropriate event handler to the ComboBox gadget as usual (although
when this event fires, *sender\hWnd will contain the handle of it's edit field). It also works
for DateGadgets.

This event corresponds to the Windows message #WM_CHAR and is typically used to
prevent certain keys from registering with a control or even modifying the keys pressed;
e.g. by capitalising all characters entered at the keyboard.

The return value is not important in that #Event_ReturnTrue and #Event _ReturnFalse
have the same effect.

What is important is whether you allow Windows to perform the default processing by
calling PerformDefaultWinProcessing() and then you will probably return a value of
#Event_ReturnDefault. Without default processing the characters pressed will not register
with the underlying control.

#0nKeyUp
This event fires whenever a non-system key has been released and the underlying

control/window has been registered for this event etc.

The values of the fields of the *sender parameter of interest are as follows:
hWnd the windows handle of the control/window.
wParam the virtual key code of the key.

This event can now be used for the edit control attached to an editable ComboBox
gadget. Attach the appropriate event handler to the ComboBox gadget as usual (although
when this event fires, *sender\hWnd will contain the handle of it's edit field). It also works
for DateGadgets.

This event corresponds to the Windows message #WM_KEYUP.

The return value is not important in that #Event_ReturnTrue and #Event _ReturnFalse

have the same effect.

What is important is whether you allow Windows to perform the default processing by

calling PerformDefaultWinProcessing() and then you will probably return a value of
#Event ReturnDefault.

Page 14

#0nLinkClick
This event fires whenever the user clicks a link within an editor gadget registered as
receiving such events.

The values of the fields of the *sender parameter of interest are as follows:

hWnd the windows handle of the editor gadget.

button #EVENT_LEFTBUTTON or #EVENT_RIGHTBUTTON as appropriate.

item the index (zero based) of the first character of the link text within the
text of the editor gadget.

state the index (zero based) of the last character of the link text within the
text of the editor gadget.

texts the full text of the link clicked.

To mark selected text within an editor gadget as being a ‘link’, the developer has two
choices. Either, manually set the #CFE_LINK style bit of the selected text (which may not
conform to usual www.... URL’s etc.) and highlight accordingly, or, to enable the editor
gadget to automatically detect and highlight URL’s within the text of the control, send the
#EM_AUTOURLDETECT message to the editor gadget (EasyVENT does not send this
message automatically).

Both of these will result in the #0nLinkClick message being sent by EasyVENT to your
event handler whenever such a ‘link’ is clicked.

NOTE, automatic detection cannot be used together with the manual process of setting
the #CFE_LINK style bit etc. Indeed, switching automatic detection on has the effect of
continually clearing the #CFE_LINK style throughout the text.

This event corresponds to the Windows notify message #EN_LINK.

The return value is unimportant as this is just a notification. You need not call
PerformDefaultWinProcessing() either.

#0nlLostFocus

This event fires whenever the registered control/window loses the keyboard focus.

This event corresponds to the Windows message #WM_KILLFOCUS.

The return value is unimportant. You will need to consider calling

PerformDefaultWinProcessing() however, especially if the underlying control displays a
caret.

#0OnMaximize
This event fires whenever the user is attempting to maximize the registered window.
This event corresponds to the Windows syscommand message #SC_MAXIMIZE.

Calling PerformDefaultWinProcessing() within your handler will allow the maximizing to
proceed. Otherwise, to prevent the maxmizing operation, simply do not call this function.

Page 15

#0OnMenultemSelect
This event fires whenever the user clicks a menu item / toolbar button registered as
receiving such events.

The values of the fields of the *sender parameter of interest are as follows:

hWnd the windows handle of the parent window.
button #EVENT _LEFTBUTTON
item the menu item /toolbar button ID.

This message is registered on a item by item basis; that is you can associate different
handlers with different menu item / toolbar button. You can also, of course, associate
more than one menu item / toolbar button to the same handler etc.

For example, the command

Result = SetEventHandler(hWnd, #0nSelectMenultem, @MenultemHandler(), 3)
will associate the particular event handler detailed with the menu item / toolbar button
with ID 3. In this case hWnd must be the handle of the main window containing the
menu or toolbar etc. (as opposed to the handle of the toolbar!)

The return value is unimportant as this is just a notification. You need not call
PerformDefaultWinProcessing() either.

#0nMinimize

This event fires whenever the user is attempting to minimize the registered window.

This event corresponds to the Windows syscommand message #SC_MINIMIZE.

Calling PerformDefaultWinProcessing() within your handler will allow the minimizing to

proceed. Otherwise, to prevent the minmizing operation, simply do not call this function.

#OnMouseDown
This event fires whenever the user clicks a mouse button within either the client or non-
client areas of the control/window registered as receiving such events.

The values of the fields of the *sender parameter of interest are as follows:

hWnd the windows handle of the control/window.

button #EVENT_LEFTBUTTON or #EVENT_MIDDLEBUTTON or
#EVENT_RIGHTBUTTON as appropriate.

state one of the values #EVENT_CLIENT or #EVENT_NONCLIENT as

appropriate.

NOTE, the mouseX and mouseY fields of the *sender parameter will be in client
coordinates or screen coordinates depending on whether this is a client or non-client event
(just check the value of the state field.)

This event corresponds to the Windows messages #WM_LBUTTONDOWN,
#WM_NCLBUTTONDOWN, #WM_MBUTTONDOWN, #WM_NCMBUTTONDOWN,
#WM_RBUTTONDOWN and #WM_NCRBUTTONDOWN as appropriate.

The return value is not important in that #Event_ReturnTrue and #Event_ReturnFalse
have the same effect.

Page 16

What is important is whether you allow Windows to perform the default processing by
calling PerformDefaultWinProcessing() and then you will probably return a value of
#Event_ReturnDefault.

#0OnMouseOver
This event fires whenever the cursor moves within either the client or non-client areas of
the control/window registered as receiving such events.

The values of the fields of the *sender parameter of interest are as follows:

hWnd the windows handle of the control/window.
state one of the values #EVENT CLIENT or #EVENT _NONCLIENT as
appropriate.

NOTE, the mouseX and mouseY fields of the *sender parameter will be in client
coordinates or screen coordinates depending on whether this is a client or non-client event
(just check the value of the state field.)

This event corresponds to the Windows message # WM_MOUSEMOVE,
#WM_NCMOUSEDOWN as appropriate.

The return value is not important in that #Event_ReturnTrue and #Event _ReturnFalse

have the same effect.

What is important is whether you allow Windows to perform the default processing by

calling PerformDefaultWinProcessing() and then you will probably return a value of
#Event_ ReturnDefault.

#0nMouseUp
This event fires whenever the user releases a mouse button within either the client r non-

client areas of the control/window registered as receiving such events.

The values of the fields of the *sender parameter of interest are as follows:

hWnd the windows handle of the control/window.

button #EVENT _LEFTBUTTON or #EVENT_MIDDLEBUTTON or
#EVENT_RIGHTBUTTON as appropriate.

state one of the values #EVENT_CLIENT or #EVENT_NONCLIENT as

appropriate.

NOTE, the mouseX and mouseY fields of the *sender parameter will be in client
coordinates or screen coordinates depending on whether this is a client or non-client event
(just check the value of the state field.)

This event corresponds to the Windows messages #WM_LBUTTONUP,
#WM_NCLBUTTONUP, #WM_MBUTTONUP, #WM_NCMBUTTONUP, #WM_RBUTTONUP and
#WM_NCRBUTTONUP as appropriate.

The return value is not important in that #Event_ReturnTrue and #Event_ReturnFalse

have the same effect.

What is important is whether you allow Windows to perform the default processing by

calling PerformDefaultWinProcessing() and then you will probably return a value of
#Event_ ReturnDefault.

Page 17

#0OnMove
This event fires whenever the registered window is moved.

This event corresponds to the Windows message #WM_MOVE.

The return value is unimportant as this is just a notification. You need not call
PerformDefaultWinProcessing() either.

#0nPaint

This event fires whenever windows or an application makes a request for part of the
registered control/window to be repainted, including the non-client area (as of EasyVENT
3.0.2). You might use this event, for example, to perform any drawing operations directly
onto the window etc.

The values of the fields of the *sender parameter of interest are as follows:

hWnd the windows handle of the control/window.
uMsg one of the Window’s constants #WM_PAINT or #WM_NCPAINT as

appropriate.

This event corresponds to the Windows messages #WM_PAINT and #WM_NCPAINT.
Return either #Event_ReturnDefault, or #Event_ReturnfFalse depending on whether you
call PerformDefaultWinProcessing() or not.

#0nResize
This event fires whenever the registered window is resized.
The values of the fields of the *sender parameter of interest are as follows:
hWnd the windows handle of the control/window.
IParam the new width of the client area in its low order word and the height
in the high order word.
This event corresponds to the Windows message #\WM_SIZE.
The return value is unimportant as this is just a notification. You may need to call

PerformDefaultWinProcessing() however.

#0nScroll

This event fires either when the user scrolls a control/window’s standard scrollbar
(horizontal or vertical) or scrolls a ScrollBar gadget or when a Spin gadget is clicked or
when the user moves the slider of a TrackBar gadget.

In all these cases, some of the fields of the *sender parameter are particularly important
as shown in the following table:

Page 18

Standard ScrollBar gadget Spin gadget Trackbar gadget
Field control/window
hWnd handle of handle of ScrollBar | handle of Spin | handle of TrackBar
control/window gadget gadget gadget
item | scroll box position | scroll box position value of Spin value of TrackBar
gadget gadget
state scroll bar code* scroll bar code* scroll bar code* scroll bar code*
uMsg | #WM_HSCROLL or | #WM_HSCROLL or | #WM_VSCROLL | #WM_HSCROLL or
#WM_VSCROLL #WM_VSCROLL #WM_VSCROLL

*The ‘scroll bar code’ assumes one of the values:

#SB_BOTTOM #SB_ENDSCROLL #SB_LINEDOWN
#SB_LINEUP #SB_PAGEDOWN #SB_PAGEUP
#SB_THUMBPOSITION #SB_THUMBTRACK #SB_TOP

of which #SB_ENDSCROLL is probably the most important as it informs us when the
scrolling operation is at an end.

This event corresponds to the Windows messages # WM_HSCROLL and #WM_VSCROLL as
appropriate.

The return value is not important in that #Event _ReturnTrue and #Event_ReturnFalse
have the same effect.

What is important (except for spin and trackbar gadgets) is whether you allow Windows to
perform the default processing by calling PerformDefaultWinProcessing() and then you
will probably return a value of #Event_ReturnDefault.

#0OnSetCursor
This event fires whenever the mouse causes the cursor to move within a window and
mouse input is not captured.

This is useful because the message is sent first to the parent window and thus gives the
parent window control over the cursor's setting in a child window etc. For example, you
can use this event to temporarily change the mouse cursor without first setting the class
cursor to null etc.
The values of the fields of the *sender parameter of interest are as follows:

hWnd the windows handle of the control/window.

wParam the handle of the window containing the cursor.

This event corresponds to the Windows message #WM_SETCURSOR.

Return #Event_ReturnFalse to prevent a child of the window/control receiving the current
event, from receiving an #0OnSetCursor event itself. Otherwise return #Event_ReturnTrue.

Use PerformDefaultWinProcessing() if appropriate.

Page 19

#0nSizingWindow

The event fires whenever the size or position of a registered window is about to change.
An application can use this event to override the window's default maximized size and
position, or its default minimum or maximum tracking size, thus restricting a user’s ability
to size the window etc.

The values of the fields of the *sender parameter of interest are as follows:

hWnd the windows handle of the registered window.
IParam a pointer to a Windows MINMAXINFO structure.

The MINMAXINFO structure contains information about a window's maximized size and
position and its minimum and maximum tracking size and consists of the following fields:

POINT ptReserved
POINT ptMaxSize
POINT ptMaxPosition
POINT ptMinTrackSize
POINT ptMaxTrackSize

(See the Windows help file for more information).

As an example, the following event handler effectively prohibits a user from sizing the
underlying window in such a way that the width is less than 400 pixels or the height is less
than 300 pixels:

Procedure.l OnSizingWindow(*sender.PB_Sender)
Protected *pMinMax.MINMAXINFO
*pMinMax.MINMAXINFO=*sender\lparam
*pMinMax\ptMinTrackSize\x=400
*pMinMax\ptMinTrackSize\y=300
ProcedureReturn #Event_ReturnTrue

EndProcedure

This event corresponds to the Windows message #\WM_GETMINMAXINFO.
The return value is not important and default processing is not advised as it would defeat

the object of having such a handler!

#0nUnhandledWinMessage
This is an event requiring some careful handling and so a discussion of this event is left to
the section

Two specialised events.

Page 20

OLE Drag and drop items.

As of version 2.0 of EasyVENT, drag and drop uses the Purebasic OLE drag and drop
library. This means that items (text, images, files etc.) can be dragged between
applications etc. and is far more powerful than that offered by earlier versions of
EasyVENT.

The drag / drop functionality of EasyVENT is thus really a convenient wrapper around the
PB library commands, but it does have the advantage of easily allowing drags from any
kind of gadget / window. See the demo programs for details.

The following events are used for dragging and dropping of items between gadgets /
windows / applications :

#O0nDragltemStart
#0nDropltem

A drag drop operation is instigated by the user on depressing the left mouse button and
moving the mouse a predetermined amount. At this point the #OnDragltemStart event
handler of the gadget / window with the focus is called. Here the developer would start
the drag with one of the Purebasic drag commands, e.g. DragText() etc.

When the user completes the drop by releasing the mouse button, the #0OnDropltem
event handler of the gadget / window beneath the cursor is then called (if such a handler
exists and if the gadget / window has been enabled for drops with the Purebasic
command EnableGadgetDrop() or EnableWindowDrop() etc.)

The two events associated with drag/drop of items are detailed thus.

#0OnDragltemStart

Registering a control with a handler for this event allows for easy drag and drop of items
from the control. For example, you could drag multiple items from a ListIcon and deposit
them in a second ListIcon gadget etc. (See the appropriate demo programs for an example
of this.)

This handler is called when the user begins the drag operation. In this case the values of
the fields of the *sender parameter are as follows:

hWnd the windows handle of the control from which an item is being
dragged.

message #0OnDragltemStart

mouseX the x-coordinate of the mouse cursor within the client area of the
underlying control at the time the drag was instigated.

mouseY the y-coordinate of the mouse cursor within the client area of the
underlying control at the time the drag was instigated.

button #EVENT_LEFTBUTTON

wParam will indicate whether various virtual keys are down including the
control key. Use this if deciding whether to instigate an OLE copy or
move etc.

Test the control key by using :
If *sender\wParam&#MK_CONTROL

etc.

Page 21

Here the developer would start the drag with one of the Purebasic drag commands, e.g.
DragText() etc.

The return from this handler is not important and is not used.

#0nDropltem
This event fires whenever the user finishes dragging an item from a gadget by releasing

the mouse button over the registered control/window.

NOTE that the control/window must have previously been enabled for drops with the
Purebasic command EnableGadgetDrop() or EnableWindowDrop() etc.

This event is preceeded by a #0OnDragltemStart event.

You can register this event with any control/window.

In this case the values of the fields of the *sender parameter are as follows:
hWnd the windows handle of the registered control/window, i.e. the

destination of the drop.
message #0OnDropItem

mouseX the x-coordinate of the mouse cursor within the client area of the
destination control (i.e. the control receiving the drop).

mouseY the y-coordinate of the mouse cursor within the client area of the
destination control (i.e. the control receiving the drop).

button #EVENT_LEFTBUTTON

item the windows handle of the control we are dragging from, i.e. the

source control.

The return from this handler is not important and is not used.

Page 22

Two specialised events.

In this section we detail two inter-related events which do need a little care as, whilst they
are included for convenience and (with the second event at least) for increasing the power
of EasyVENT, they can lead to certain problems if they are used without due consideration.

#0OnANYevent.
This event provides a quick means of processing ALL events (not Windows messages) for a
particular window\control in a single procedure (rather than individual procedures).

In earlier versions of EasyVENT (prior to version 3.0.1), if you wished a single event
handler to process two or more events for the same window\control, then you would need
to issue two SetEventHandler() commands, one for each event.

For example, suppose you wished to handle # OnKeyPress and #0nChange for the same
edit control and in the same handler function, then you would previously have had to issue
the commands :

SetEventHandler(GadgetID(+#editl), #OnKeyPress, @MyHandler())
and SetEventHandler(GadgetID(#editl), #OnChange, @MyHandler())

separately.

With #0nANYevent, you can now use a single event handler function to process ALL
events for the underlying window\control; kind of like a Window callback function (but of
course all the events have been automatically translated from Window messages and
notifications etc. by EasyVENT).

Note that when I say ALL events for the underlying window\control, I mean ALL events
with one exception >, there are no other exceptions! All events get directed to your
handler whether you intend to process them or not!

So, for example, issuing the command :
SetEventHandler(GadgetID(#editl), #0nANYevent, @MyHandler())

will cause absolutely all events (with just the one exception) appropriate for this particular
edit gadget to be sent to the function named MyHandler().

Now, with this seemingly convenient arrangement comes a need to consider those events
which you have no interest in. After all, EasyVENT has no way of knowinge exactly which
events you process in your #0nANYevent handler. Consequently, you need to ensure that
all those events which you do not process in your #0nANYevent handler receive the
‘default processing’ by using the PerformDefaultWinProcessing() function.

® #OnUnhandledWinMessage.

Page 23

A suitable ‘template’ for a #0OnANYevent event handler would thus be :

Procedure.l MyUnHandledWinHandler(*sender.PB_Sender)
Select *sender\message

...... {Your code here - handle any messages you require.}

Default {for all unhandled messages).
PerformDefaultWinProcessing(*sender)
result = #Event_ReturnDefault

EndSelect
ProcedureReturn result
EndProcedure

The thing to remember with #0nANYevent is that, if one is defined for a particular window
or control, then EasyVENT regards all events (except #OnUnhandledWinMessage) as
having been dealt with and will thus not pass the underlying Window’s message back to
the system for default processing. Hence the ‘Default’ switch in the above template code.

Please see the demo program : "OnANYevent demo.pb” for an example of using such a
handler function.

#0nUnhandledWinMessage.
This event fires whenever a Windows message is not handled by an event procedure

(incuding #0nANYevent handlers in which only the default processing occus) or indeed in
cases where there is no corresponding EasyVENT event. This includes most (but not all!)
unhandled EasyVENT events.

This event is sent in the form of the underlying Windows message and consequently you
should handle this accordingly. For example, a #OnButtonClick event is, at the outset,
sent to the #0OnButtonClick handler attached to the underlying button. However, at the
Windows level this message corresponds to a #BN_CLICKED command message sent to
the parent window of the button. Hence, if you are looking to process this event in
response to a #0OnUnhandledWinMessage message, then you must look for it in the
#0nUnhandledWinMessage handler attached to the parent window of the button. It's an
important point and one which has caused a few developers a few headaches!

The values of the fields of the *sender parameter of interest are essentially those which
correspond to the usual window procedure parameters; namely (hWnd, uMsg, wParam,
IParam) and are as follows:

hWnd the handle of the window receiving the message

uMsg the Windows message constant, e.g. #WM_COMMAND etc.
wParam

IParam

In addition, mousex and mousey contain the client coordinates of the cursor at the time
the message was sent, and the originalmessage value holds the EasyVENT message
constant in the event that the Windows message would have generated an EasyVENT
event.

Page 24

The return value from this handler is passed directly back to Windows because if such a
handler is present, it becomes responsible for all Windows messages which are not
processed by any event handler (including the #OnUnhandledWinMessage event handler).

Like any Windows callback procedure you must ensure that any unhandled messages

receive default processing. To do this simply call PerformDefaultWinProcessing() for all
unhandled messages.

A suitable ‘template’ for a #0OnUnhandledWinMessage event handler would be :

Procedure.l MyUnHandledWinHandler(*sender.PB_Sender)
Select *sender\uMsg

...... {Your code here - handle any messages you require.}

Default {for all unhandled messages).
result = PerformDefaultWinProcessing(*sender)

EndSelect
ProcedureReturn result
EndProcedure

(Note the subtle differences to the template given for #0OnANYevent handlers.)

For messages which you decide to handle within the #OnUnhandledWinMessage event
handler, ensure that you return a valid result as befitting the underlying message. You will
need to consult the API documentation for these details.

Remember that there is nothing which forces an application to utilise a
#0nUnhandledWinMessage handler. In these cases, all unhandled messages are
automatically sent for default processing by EasyVENT. ©

Please see the demo program : “"OnUnhandledWinMEssage demo.pb” for an example of
using such a handler function.

® Not all unhandled EasyVENT events are passed to a #OnUnhandledWinMessage handler, as some do not
correspond to Windows messages. The point is that #0OnUnhandledWinMessage handlers should really only be
used for direct processing of Windows messages and not EasyVENT events.

Page 25

A note on the relationship between #OnANYevent and #OnUnhandledWinMessage.
First, note that handlers for these two events differ in their return values.

#0nANYevent returns one of : #Event_ReturnDefault or #Event_ReturnTrue or
#Event_ReturnFalse (like any regular event handler), whilst #OnUnhandledWinMessage
returns the actual result of processing a Windows message.

Secondly, #0OnANYevent handlers take absolute priority over all other handlers.

For example, suppose we have issued the following commands for an edit control :
SetEventHandler(GadgetID(#editl), #0nKeyPress, @MyKeyPressHandler())
SetEventHandler(GadgetID(#editl), #0nANYevent, @MyOnANYHandler())

and SetEventHandler(GadgetID(#editl), #0nUnHandledWinMessage, @WinHandler())

Then, if a #OnKeyPressed event is raised, it will be sent to the #0OnANYevent handler and

not the #OnKeyPressed handler.

Similarly, if an event is raised which has no specific handler attached to it, then it too gets
sent to the #0OnANYevent handler.

Only Windows messages which have no corresponding EasyVENT event will be despatched

to the #0OnUnhandledWinMessage handler.

Contrast this to the following situation in which no #OnANYevent handler is defined :
SetEventHandler(GadgetID(#editl), #0nKeyPress, @MyKeyPressHandler())

and SetEventHandler(GadgetID(#editl), #0OnUnHandledWinMessage, @WinHandler())

In this case, if a #0nKeyPressed event is raised, it will be sent to the #0OnKeyPressed

handler as would be expected.

However, if an event is raised which has no specific handler attached to it, then it will be
sent (if it corresponds to a Windows message) to the #OnUnhandledWinMessage handler.

Page 26

A note on Panel gadgets and ScrollArea gadgets.
Events can be attached to the child controls of any container gadget (including Panel
gadgets and ScrollArea gadgets) as with all other controls.

However, take a little care when trying to attach events directly to a Panel gadget’s
individual panels or a ScrollArea gadget’s ‘client area’. In the case of a Panel gadget,
individual panels are ‘Static’ Windows controls and in the case of a ScrollArea gadget, the
‘client’ area is a customised window registered by Purebasic.

The best way of dealing with these are with the GetParent_() API command.

For example, to attach a #0OnMouseOver event to an individual panel (as opposed to a
gadget within the panel - which is no problem), use the command:

Result = SetEventHandler(GetParent_(GadgetID(#anygadget)), #OnMouseOver,
@MyHandler())

where #anygadget is the identifier of any gadget placed within the particular panel.

See the demo programs for further details.

A note on Spin gadgets.

There is a risk of a program entering an infinite loop if using certain events without undue
care. Specifically, if you set the value of a spin gadget within its #OnChange event handler
then your program will undoubtedly enter such a loop.

For this reason I recommend using the #0nScroll handler when setting the value of a Spin
gadget which, coincidentally, provides a lot of extra information anyhow.

See the SpinGadget demo program for more details.

A note on structuring your programs.
There is no requirement (or rule) which specifies that an event procedure can only handle
one event or deal with one control/window etc.

Indeed, I now typically use a single event procedure for each control, sifting through the
events with a Select \ EndSelect construct.

For example :

Procedure.l events_EditorGadget(*sender.PB_Sender)
Select *sender\message
Case #0nMouseDown, #0nDbIClick
result = #Event_ReturnFalse ;No call to PerformDefaultWinProcessing() means that
no default processing will occur.
Case #0OnKeyPress
If *sender\wParam <> #VK_TAB
PerformDefaultWinProcessing(*sender)
result = #Event_ReturnDefault
EndIf
EndSelect
ProcedureReturn result
EndProcedure

Page 27

Of course, the above example would require several uses of SetEventHandler(), one for
each of the messages processed.

An alternative is of course the # OnANYevent event.

Occasionally I will use a single event procedure to deal with one event, but spread across
several windows / controls. A typical use for this kind of scenario might be to use a
#0OnErase handler to prevent Windows from erasing the backgrounds of several gadgets in
an attempt to reduce flicker etc. (This is a trick that can be used to good effect.)

Procedure.l event_EraseBackground(*sender.PB_Sender)

ProcedureReturn #Event_ReturnFalse ;This will prevent Windows from erasing the
background etc.
EndProcedure

Again, several uses of SetEventHandler() are required, this time one for each window /
control to which the above handler is attached.

Upgrading from EasyVENT 1.XX.XX Or 2.XX.XX.

Unfortunately EasyVENT 3 is not backwards compatible in that applications using earlier
versions of EasyVENT may well refuse to compile. At the very least I would expect the
resulting executables to function incorrectly or even crash completely.

This is because with the latest version of the library, an event handler can no longer rely
upon EasyVENT to pass the Windows message corresponding to an event (if any) back to
the system as soon as the event handler has finished its work. Instead the event handlers
have to explicitly call the function PerformDefaultWinProcessing() in order for the
underlying message to receive default processing.

This is a far more flexible way of doing things, much more powerful, but of course this
does leave us with the extra burden of deciding whereabouts in our event handlers to call
this function; at the beginning, at the end, or not at all?

It all depends of course on the particular event and the desired effect etc.

However, converting source code using earlier versions of EasyVENT to use EasyVENT
3.xx.xx may not be as difficult as it first appears. Remember that all default processing in
earlier versions of EasyVENT occurred after the event handler had finished executing.

We can thus begin our conversions by placing all instances of
PerformDefaultWinProcessing() at the end of our handlers.

In fact, if in your old source a handler returned the value #PB_PRocessPureBasicEvents in
order for default processing of a Windows message to occur, simply replace this with :
PerformDefaultWinProcessing()
ProcedureReturn #Event_ ReturnDefault

For those instances when zero was returned, then return the value #Event_ReturnFalse
without calling the PerformDefaultWinProcessing() function.

I think this should cater for about 70% of the ammendments required to upgrade our
source code to use EasyVENT 3.xX.xX.

Page 28

Indeed, this was the case with all the demo programs which are included in the EasyVENT
package.

Other changes will invariable involve having to place additional calls to
PerformDefaultWinProcessing() etc.

Page 29

O&A : tips and tricks.

The following ‘tips’ have generally arisen out of questions I have answered from other
developers making good use of EasyVENT.

Question 1) I have set a #OnDragltemStart handler for a ListView gadget. However the
scrollbar of the listviewgadget does not react on a single click when the eventhandler is set.

The only explanation for this is that you must have a #0OnMouseDown handler set up for
the same gadget but are not calling PerformDefaultWinProcessing() within that handler.

Remember that #0OnMouseDown now fires for non-client area messages as well as client
area ones.

Stephen Rodriguez.

Page 30

